Cluster-Based Profile Monitoring in Phase I Analysis

نویسندگان

  • Yajuan Chen
  • Jeffrey B. Birch
چکیده

An innovative profile monitoring methodology is introduced for Phase I analysis. The proposed technique, which is referred to as the cluster-based profile monitoring method, incorporates a cluster analysis phase to aid in determining if non conforming profiles are present in the historical data set (HDS). To cluster the profiles, the proposed method first replaces the data for each profile with an estimated profile curve, using some appropriate regression method, and clusters the profiles based on their estimated parameter vectors. This cluster phase then yields a main cluster which contains more than half of the profiles. The initial estimated population average (PA) parameters are obtained by fitting a linear mixed model to those profiles in the main cluster. In-control profiles, determined using the Hotelling's 2 T statistic, that are not contained in the initial main cluster are iteratively added to the main cluster and the mixed model is used to update the estimated PA parameters. A simulated example and Monte Carlo results demonstrate the performance advantage of this proposed method over a current non-cluster based method with respect to more accurate estimates of the PA parameters and better classification performance in determining those profiles from an in-control process from those from an out-of-control process in Phase I.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phase-I monitoring of standard deviations in multistage linear profiles

In most modern manufacturing systems, products are often the output of some multistage processes. In these processes, the stages are dependent on each other, where the output quality of each stage depends also on the output quality of the previous stages. This property is called the cascade property. Although there are many studies in multistage process monitoring, there are fewer works on prof...

متن کامل

A robust wavelet based profile monitoring and change point detection using S-estimator and clustering

Some quality characteristics are well defined when treated as response variables and are related to some independent variables. This relationship is called a profile. Parametric models, such as linear models, may be used to model profiles. However, in practical applications due to the complexity of many processes it is not usually possible to model a process using parametric models.In these cas...

متن کامل

Phase II monitoring of multivariate simple linear profiles with estimated parameters

In some applications of statistical process monitoring, a quality characteristic can be characterized by linear regression relationships between several response variables and one explanatory variable, which is referred to as a “multivariate simple linear profile.” It is usually assumed that the process parameters are known in Phase II. However, in most applications, this assumption is viola...

متن کامل

Phase II logistic profile monitoring

In many industrial and non-industrial applications the quality of a process or product is characterized by a relationship between a response variable and one or more explanatory variables. This relationship is referred to as profile. In the past decade, profile monitoring has been extensively studied under the normal response variable, but it has paid a little attention to the profile with the ...

متن کامل

A Self-starting Control Chart for Simultaneous Monitoring of Mean and Variance of Simple Linear Profiles

In many processes in real practice at the start-up stages the process parameters are not known a priori and there are no initial samples or data for executing Phase I monitoring and estimating the process parameters. In addition, the practitioners are interested in using one control chart instead of two or more for monitoring location and variability of processes. In this paper, we consider a s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012